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ScienceDirect
A fundamental goal in sensory neuroscience is to understand

the rules that govern how neural activity evoked by a stimulus

drives the final behavioral outcome. Here, focusing primarily on

the insect olfactory system and its first two anatomical stages:

olfactory sensory neurons in the insect antenna and their

postsynaptic targets in the antennal lobe, we review the current

understanding of the relationships between odor-evoked

neural activity and behavior. The compiled evidences suggest

that these olfactory circuits closer to the sensory periphery may

already represent sensory information in a format that is easily

translatable to behavior.
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Introduction
Olfactory systems of phylogenetically diverse animals

have striking similarities indicating that a common set

of organizational and information processing principles

may be employed for translating chemosensory inputs

into appropriate behavioral outputs [1,2]. In this review,

we discuss some of the rules that have been identified to

link physiology with behavior in this sensory modality.

For the sake of conciseness, our focus here is primarily

limited to the first two anatomical centers of the insect

olfactory pathway, the antenna and the antennal lobe

(analogous to the olfactory epithelium and the olfactory

bulb in vertebrates [2]).

The architecture of the insect olfactory sensor
In insects, volatile chemicals are typically detected by

olfactory receptor neurons (ORNs) in the antenna and

maxillary palps. The current dogma is that most ORNs

selectively express a specific receptor gene from a large

family of olfactory receptors, along with a universally
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expressed co-receptor [3–5]. In addition, ORNs expres-

sing gustatory and ionotropic receptors that detect certain

classes of volatile chemical cues have also been found in

the antenna [6–10]. Thus far, neurophysiological inves-

tigations suggest that the tuning of specific ORNs to

specific sets of chemicals is determined by the molecular

identity of the olfactory receptor gene they express

[11,12]. Further, the seven transmembrane domain pro-

tein members of the olfactory receptors family were

shown to function primarily as ligand-gated ion channels

[13] ensuring rapid response initiation [14], which is in

contrast with the vertebrate odorant transducers that act

as a G-protein coupled receptors [15].

The olfactory receptor neurons, analogous to their gusta-

tory counterparts also transduce chemical signals into

trains of action potentials. These action potentials are

generated through a signaling cascade that involves the

upstream olfactory receptors that provide graded poten-

tials and the downstream spike generation component

[16]. Therefore, it is possible to block the olfactory

sensory neurons from spiking without interfering with

the olfactory receptor function [16], or to activate the

spiking component independent of olfactory receptor

stimulation [17]. Whether this cascaded two-stage ar-

rangement offers additional advantages for odor proces-

sing right at the level of the olfactory receptors in the

cilium is not known.

Organization of olfactory receptor neurons in
the insect antenna
The ORNs are housed in sensory hairs called ‘sensillum’

distributed along the length of the antenna. The sensory

hairs vary in their morphology, number of neurons they

house, type of olfactory receptors expressed, and their

sensing function (e.g., chemosensor [11,18,19], mechan-

osensor [20], humidity sensor [21], among others). These

different sensilla types have a stereotyped placement in

the antenna [22], and axons from sensory neurons that are

housed in these sensillum types are spatially separated in

the downstream antennal lobe [23,24]. Whether this

organization facilitates competitive or cooperative lateral

interactions between inputs driven by different sensillum

types is yet to be determined.

Within a single sensillum, competitive interactions have

been reported between the co-housed ORNs [25��]
(Figure 1a). Within an individual sensillum, a common

potential difference is maintained between the dendritic

and the axonal compartments of the ORN due to the
www.sciencedirect.com
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electrical insulation of the sensillar lymph (a salty solution

that bathes the dendrites) from the hemolymph (a fluid

that bathes the somatic and axonal compartments). This

arrangement can be considered analogous to an electrical

circuit where two resistors are connected in parallel to a

battery (note that the potential difference between the

dendritic and somatic compartments is equivalent to the

battery, and the individual ORNs can be regarded as

variable resistors). Consequently, when one ORN is

strongly activated, its input resistance is lowered, allowing

most of the transduction current to flow through it while

simultaneously reducing the input drive for the other co-

housed neuron. This ‘ephaptic’ coupling mechanism

allows transient firing in one ORN to inhibit generation

of action potentials in the other co-housed ORN. Intrigu-

ingly, such lateral intra-sensillar interactions between

groups of sensory neurons can modulate the innate be-

havioral preference of fruit flies to certain odor combina-

tions [25��]. Therefore, these results suggest that even

the organization of sensory neurons in the insect antenna

may have been optimized to generate an appropriate

behavioral response in environments where multiple cues

can be encountered simultaneously.

Behaviorally important single sensory neuron
activity
The presence of dedicated ORNs (‘specialists’) that drive

a specific behavioral outcome forms another line of evi-

dence to suggest neural activities closer to the sensory

periphery can be good indicators of the final behavioral

response. For example, one scheme for translating senso-

ry input to behavior is the ‘labeled-line’ approach. In such

a scheme, a ‘private’ odorant activates the ‘specialist’

ORN, which then drives subsequent neural activities

in a dedicated information-processing channel or a ‘la-

beled-line’. Furthermore, neural activity in this channel

can be shown to be necessary, and sometimes sufficient,

to generate or modulate the odor-evoked behavior. Note

that either the sensory neuron activated or the odorant

identity uniquely tags this channel. Therefore, this hy-

pothesis can also be interpreted as a processing scheme

that uniquely caters to odorant-driven innate behaviors.

Several such labeled-line input–output mappings must

co-exist to produce the repertoire of behavioral response

exhibited by an organism. Some examples of such la-

beled-line approaches have come from studies of innate

behaviors such as the response to alarm signals and stress

avoidance [26,27], host-seeking [8,28], food attraction

[9,29], food avoidance [10,30], and pheromone commu-

nications [31,32].

If such ‘odor-specific’ coding does exist, then it would be

reasonable to expect that the neural activity in such

dedicated olfactory channels are kept segregated from

other sensory channels, and also treated differently than

the ‘generalist’ inputs that might activate multiple ORNs.

Indeed, previous studies have revealed that the second-
www.sciencedirect.com 
order neurons (projection neurons in the antennal lobe)

that are driven by specialist ORNs are more likely to

retain the odor specificity of their inputs [33�]. However,

this one-to-one response mapping appears to be relin-

quished beyond the first two processing stages, and

multiple labeled-lines tend to co-localize in the lateral

horn (a third-order olfactory circuit associated with innate

preferences) [34]. Nevertheless, different classes of sen-

sory input, such as food versus pheromone, are segregated

in the lateral horn [34] (Figure 1b). Similarly, it has been

demonstrated that odorants that attract and those that

repel insects are more likely to activate sensory neurons

that drive activity in distinct loci within the lateral horn

[34,35]. Hence, it is possible that distinct ‘labeled-lines’

may converge quickly onto overlapping higher-order

neurons in order to drive similar odor-driven behaviors

(i.e., response to generally attractive vs. repulsive odor-

ants) [36].

A second line of evidence for labeled-line coding comes

from the comparison of the strength of presynaptic inhi-

bition at the ORN axonal terminals (Figure 1c). For

example, it was found that a sensory neuron that detects

a stress-related aversive odorant receives comparatively

less pre-synaptic inhibition than a pheromone sensing

ORN [37�]. Hence, processing in these sensory channels

may activate distinct gain control mechanisms and there-

by allow odor-specific processing to suit behavioral needs.

The case against this ‘labeled-line’ approach arises pri-

marily with regards to processing stimulus intensity. As

the stimulus intensity is increased, invariably most odor-

ants recruit additional ORNs that are not dedicated to this

‘private’ odorant. Therefore, an odorant that is ‘private’ at

a lower intensity may no longer be ‘private’ at higher

stimulus intensities [11,38]. This observation taken to-

gether with the findings that have revealed a strong

synapse between ORNs and second-order neurons [39],

and existence of non-linear transformations that amplify

weak ORN responses but quickly saturate stronger inputs

[40], will complicate processing at higher intensities for

most labeled-line schemes.

Global features of olfactory sensory neuron
activity and behavior
By contrast to the labeled line scheme, it is possible to

envision a mechanism where spiking activity from a large

subset of sensory neurons is integrated to drive a behav-

ioral response. We will refer to such an approach as a

‘global’ encoding scheme, since the same strategy for

translating sensory input into behavior can be applied for

all odorants. Such an approach has been particularly

effective when behavioral preferences for larger odor

panels are considered [41��,42]. For instance, the total

spiking activity across all olfactory sensory neurons

recorded in fruit fly larvae was found to be a good

indicator of the degree of attraction or repulsion that
Current Opinion in Insect Science 2015, 12:54–63
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Figure 1

(a) Ephatic coupling

(b) Labeled-line scheme

(d) Global scheme(c) Presynaptic inhibition

Eye

Antenna

Olfactory
sensilla

Sensillum
lymph

Hymolymph

Antennal lobe Lateral horn (LH)

O
R

N
1 

so
m

a

O
R

N
2 

so
m

a

R1 R2

(i -i1)i1

iORN 1 ORN 2

Antenna

Trichoid sensilla
localization

P
he

ro
m

on
es

Specific glomerulus
(Fru+ ORN target)

Anterior-ventral LH

A
r

S

A
r

S

Posterior

Anterior

M
ed

ia
l

La
te

ra
l

Posterior

Anterior

M
ed

ia
l

La
te

ra
l

F
ru

it 
od

or
s

Basiconic sensilla
localization

Other glomerulus Posterior-dorsal LH

ORNs

Presynaptic
inhibition strength

Glomerulus

PNs

O
R

N

Summation of
ORN inputs

B
eh

av
io

r

CO2 Pheromone

Inhibitory LN

Σ

Current Opinion in Insect Science 

Linking sensory neuron activity with behavior. (a) Two ORNs housed in the same sensory hair indirectly communicate with each other. Due to their

special arrangement, a potential difference between the dendritic and somatic/axonal compartments is achieved, and the dendritic compartments

of the co-housed ORNs act as two resistors in parallel. Therefore, activating one ORN strongly reduces its input resistance and indirectly

inactivates the other ORN. Intriguingly, this interaction is behaviorally relevant. Figure adapted from [25��]. (b) Pheromone and fruit odors activate

spatially distinct neurons in the early olfactory pathway. Pheromones are detected by ORNs located in the sensilla trichordia, whereas fruity
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an odorant would elicit [41��] (Figure 1d). In general,

repellent odorants were found to evoke more inhibition

and therefore less total spiking activity. By contrast,

attractive odorants evoked relatively more spiking activi-

ty in most of the sensory neurons they activated. Such a

global decision rule that is based on total spiking activity

was shown to explain data obtained with both inverte-

brate and vertebrate models [42].

How could a coarse readout of sensory neuron activity

have any relation with behavior at all? This surprising

result can be clarified when we consider that the behav-

ioral responses explored in these studies are primarily,

attraction versus repulsion. Hence, these results indicate

that the main source of variance in the neural data

correlates with the biggest source of variance in the innate

behavioral responses [42]. One way to think about these

results is through the following analogy: The total sound

levels in a football stadium can be expected to correlate

with winning or losing of the home team. Quietness/less-

activity indicates losing/repulsion, and loudness/high-ac-

tivity corresponds to winning/attraction, respectively.

Nevertheless, a careful examination of whether global

features can also predict finer behavioral response fea-

tures is still required.

Combinatorial features of olfactory sensory
neuron activity and behavior
A compromise between the two extreme approaches

considered so far, single neuron and global activity, is

the combinatorial scheme, where a select few sensory

neurons are combined to drive behavior. This strategy

arguably has an advantage in terms of increasing the

encoding capacity of the system [43–45]. Theoretically,

even a simple system with fifty neurons, where ten

randomly selected neurons represent each odorant (i.e.,

a ‘combinatorial code’), can encode for �10.2 billion

distinct odorants (if the number of encoding neurons

can also vary between stimuli then the number of com-

binations becomes 250!). Whether such an enormous

coding space is actually necessary is worth further con-

sideration. The paradox here will become apparent when

we consider the discrimination power of these high-di-

mensional neural coding schemes together with the rela-

tively few distinct behavioral responses that are finally

generated (e.g., attraction vs. repulsion) [46].

Current evidences suggest that a linear combination of

spiking activity in a pair of sensory channels or a few
(Figure 1 Legend Continued) odorants are detected by sensory neurons h

segregated because they activate distinct second-order projection neurons

[34]. Illustration based on results reported in [22,24,34]. (c) ORN inputs are 

certain stress-related sensory inputs to be transmitted without reduction, w

Figure adapted from [37�]. (d) A global scheme for generating behavioral re

odorants evoke responses in multiple sensory neurons. Surprisingly, a simp

good indicator of whether or not the odorant will attract or repel [41��].
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sensory neurons is a sufficiently good indicator of the

overall behavioral response elicited by the odorant [41��].
In some other cases, modulating activity in select chan-

nels without altering the activity in other co-activated

channels has been sufficient to induce behavioral varia-

tions [47]. For the purposes of this review, we regard both

results as a combinatorial scheme because more than one

sensory channel is necessary to explain behavior. Overall,

it appears that although an encoding scheme based on

ensembles of sensory neurons may explain behavior, the

size of the encoding ensembles for each odorant may be

relatively small.

Temporal features of olfactory sensory neuron
activity and behavior
So far, we have considered coding schemes that have

ignored the contribution of information encoded in the

temporal response dimension. How important are the

specific patterns of spike trains elicited by each odorant?

Answering this question has proved challenging for sev-

eral reasons. First, most behavioral assays do not track

responses with the same resolution as the neural activity.

Second, it is difficult to manipulate temporal features

without altering other response attributes, such as re-

sponse amplitude or the total number of spikes generat-

ed. Hence, alternate interpretations of the same result

cannot be ruled out.

Behavioral studies using transgenic flies with only one

functional type of sensory neuron have been illuminating

in this regard. Such flies are capable of discriminating

different odorants, and distinguishing between different

intensities of the same odorant as well [48]. This result

clearly reveals that the olfactory circuits downstream from

the sensory neurons can take advantage of whatever

distinguishing set of features that is available. Further-

more, temporal features of sensory neuron activity have

been shown to play an important role for encoding mix-

tures [49], and for eliciting a rich repertoire of temporal

patterns in the second-order neurons [45]. Further work

is still needed to examine the behavioral relevance of

other temporal attributes of olfactory sensory neuron

responses.

The organizational logic of the insect antennal
lobe
The second anatomical stage in the insect olfactory

pathway is the antennal lobe. Here, sensory neurons that

express the same olfactory receptor gene converge onto a
oused in the sensilla basiconica. These ORN inputs are kept

 in the antennal lobe and third-order intrinsic neurons in the lateral horn

not treated equally. Presynaptic inhibition strength is varied to allow

hereas pheromone inputs do not enjoy the same benefit.

sponse combining various sensory inputs. In Drosophila larvae, most

le summation of all or a selected subset of ORN spike counts is a

Current Opinion in Insect Science 2015, 12:54–63
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single or a pair of spherical structures called glomeruli.

This convergence of inputs from sensory neurons of the

same type facilitates elimination of uncorrelated noise

and improves the signal-to-noise ratio. As a direct

consequence of this result, even when individual ORNs

are only weakly activated by an odorant, their down-

stream second-order projection neuron can become

more sensitive to those inputs [40]. Further, such

sensitivity enhancements can broaden the response

tuning of individual projection neurons when compared

to the first order ORNs [39,40]. Note that other circuit

mechanisms within the antennal lobe, such as lateral

excitation through cholinergic local neurons, could fur-

ther contribute toward this response broadening as well

[50,51].

In fruit flies, ORNs send axons to both ipsilateral and

contralateral antennal lobe. These bilateral projections,

however, activate the second-order neurons on the two

sides with different efficacies [52]. The ipsilateral projec-

tion neurons are more intensely driven and therefore

respond faster and stronger when compared to the con-

tralateral neurons. These asymmetries are likely to assist a

behaving animal in interpreting spatial information asso-

ciated with an odor source.

Two additional topological features of the antennal

lobe are also worth pointing out here. It appears that

sensory inputs from different types of sensory hairs are
Figure 2

(a) Single-neuron coding scheme

(b) Spatiotemporal coding scheme
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spatially segregated in the insect antenna lobe [24].

Whether this input segregation is exploited while pro-

cessing competing inputs from these sensory channels

is not known. In addition, it has also been shown that

attractants and repellants activate neurons located in

distinct antennal lobe loci [53�]. Whether these spatial

organizational features have any specific role in shaping

behaviorally relevant neural interactions is yet to be

understood.

A behaviorally important single projection
neuron activity
Although a number of studies have focused on correlating

single sensory neuron activity and the final behavioral

output, such investigations are rare at the level of second-

order projection neurons. Nonetheless, a study in the

moth Manduca sexta pheromone sensing system showed

that injection of a GABA antagonist (bicuculline methio-

dide) altered the firing patterns of projection neurons that

innervate the macroglomerular complex (MGC) in these

insects (a glomerulus specifically associated with proces-

sing pheromones in this species). This pharmacological

manipulation disrupted the ability of the male moths to

track and navigate toward a pheromone source in wind

tunnel experiments [54] (Figure 2a). Hence, this work

indicates that the temporal structure of MGC projection

neuron spike trains is important for odor localization

tasks.
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ioral responses. (a) Altering the firing properties of a specific subset of

oths. Illustration summarizing actual results reported in [54]. (b)

mells like lemon to humans and repels these insects. An odorant

 that exclusively pattern-matched with geraniol. As can be expected,
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Combinatorial features of projection neuron
activity and behavior
Processing within the antennal lobe is thought to reshape

the sensory inputs received from ORNs for achieving

various important sensory computations [44,55]. These

include,

� Input reformatting: creating a spatiotemporal basis for

encoding stimulus-specific information [44,45,56,57]

� Decorrelation: refining information over time [58]

� Normalization or gain control: maintaining invariance

with respect to changes in stimulus intensity [59,60],

and

� Non-linear amplification: boosting weak signals and

saturating strong signals [40].

The primary justification for most of these processing

schemes has come from the computational viewpoint of

discriminating odorants based on antennal lobe activity.

The behavioral relevance of most of the signal processing

mechanisms, although straightforward to envision, is yet

to be demonstrated.

Recently, qualitative comparisons [61] and quantitative

predictions [62��,63��,64] have revealed that the ensem-

ble activities in the antennal lobe correlates with be-

havior. In moths, for example, combinatorial projection

neuron response features were used to predict whether

two odor mixtures with varying compositions could elicit

similar behavioral responses [64]. Two ensemble re-

sponse features were particularly found useful for this

generalization  task: (i) mean spiking activity across

projection neurons, and (ii) features based on pairwise

spiking synchrony (defined here as the fraction of coin-

cident spikes relative to the total number of spikes

observed in pairs of neurons). These results suggest

that similarity in projection neuron combinatorial activ-

ities may correspond to similarity in the behavioral

space.

Could manipulation of the neural responses in the anten-

nal lobe lead to predictable changes in behavior? Studies

again in moths suggest that this might be the case [61].

Here, the authors found that the time to take flight toward

a flowery odor mixture in a wind tunnel could be expe-

dited by adding a select additional component. Whether

or not the added odor component reduced the latency of

the behavioral responses was correlated with the type of

transformation (linear vs. nonlinear) between the sensory

neuron and antennal lobe activities. Note that nonlinear-

ity in this study is defined as disproportionate changes in

projection neuron activity that cannot be predicted di-

rectly from sensory neuron inputs. Therefore, non-linear

signal processing is considered here as an indicator of

significant involvement of antennal lobe circuits in

reshaping stimulus-evoked responses.
www.sciencedirect.com 
Similarly, ensemble projection neuron firing patterns

have been shown to be useful for predicting the recogni-

tion performances of locusts in an appetitive-conditioning

assay. A recent study, found that locusts trained in an

appetitive-conditioning assay, responded to the trained

odorant (i.e., the conditioned stimulus) with varying

probabilities depending on whether the odorant was

presented solitarily or in overlapping sequences following

a distracting cue. Nevertheless, the observed behavioral

response variations were found to correlate with how well

the ensemble neural activities following the introduction

of the conditioned stimulus tracked the stimulus and

pattern matched across conditions [62��] (Figure 3a) In-

terestingly, the authors found that even the innate be-

havioral preference of an odor mixture could be predicted

from the spatiotemporal antennal lobe neural activities

[62��] (Figure 2b). Taken together, these results suggest

that ensemble projection neuron firing patterns can cor-

relate with both acquired as well as innate preferences in

the insect olfactory system.

Global features of projection neuron activity
and behavior
In addition to altering the spiking activity in individual

projection neurons, odor presentations tend to entrain

oscillatory field potentials during stimulus exposures

[65–68]. This stimulus-evoked oscillatory neural activity

is thought to arise as a result of summation of electrical

currents contributed by many projection neurons, and can

be perturbed by blocking the feedback inhibition provid-

ed by the GABAergic local neurons in the antennal lobe

[65,67–69]. Furthermore, spiking activities in individual

projection neurons are phase locked with respect to these

global field potential signals during certain epochs of

stimulus exposure. However, neither the frequency of

these oscillations nor the phase at which the projection

neuron fire action potentials change in stimulus-specific

manner. These observations raise questions regarding the

relevance of oscillatory field potential activity in olfactory

signal processing and therefore to behavior. A study in

honeybees [68] addressed this issue by pharmacologically

disrupting the field potential oscillatory activity. Intrigu-

ingly, such disruption did not affect coarse discrimination

between dissimilar odorants, but selectively impaired finer

discrimination between similar odorants (Figure 3b).

Whether there are additional computational roles for these

stimulus-evoked neural oscillations need further studies.

Temporal features of projection neuron
activity and behavior
Most odorants evoke behavioral responses that are rapid

and typically initiate within a few hundred milliseconds of

stimulus onset [63��,64]. This raises a fundamental ques-

tion regarding the role of neural activity patterned over

time, especially those that happen on a slower timescale.

Examination of how flying insects localize odor sources

provided the first piece of evidence that maintaining the
Current Opinion in Insect Science 2015, 12:54–63
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Figure 3

(a) Spatiotemporal coding scheme

(b) Global coding scheme

(c) Temporal coding scheme
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Correlating projection neuron activity in the antennal lobe with learned behavioral responses. (a) In an appetitive-conditioning assay, locusts open

the sensory appendages close their mouths, called ‘maxillary palps’ to indicate odor recognition. How well the locusts could recognize the

conditioned odorant when the same stimulus was presented atop different background cues could be predicted from the antennal lobe

spatiotemporal neural activities. Illustration depicting actual results reported in [62��]. (b) Local field potential activity, a measure of global antennal

lobe activities, reveals a distinct 20–30 Hz oscillation upon odorant exposure. In honeybees, disrupting this oscillatory neural activity using

pharmacological manipulation leads to impairment only when discriminating two similar odorants. Illustration summarizing actual results reported

in [68]. (c) A simple rule governing how ensemble neural activities are translated to behavior in locusts is that: synchronous neural activity leads to

predictable behavior. Although variable, asynchronous neural activity can also evoke the same behavioral response. The only caveat is that the

combination of neurons activated by the conditioned stimulus must be preserved across training and testing conditions. Illustration depicting

actual results reported in [63��].
integrity of the temporal structure of projection neuron

responses may be important for source localization tasks

[54].

In addition, our recent work showed that although odor

identity was insensitive to variations in the temporal struc-

ture of projection neuron ensemble responses, the level of

spike synchrony is a good indicator of predictability of
Current Opinion in Insect Science 2015, 12:54–63 
behavioral responses [63��]. Hence, these results suggest a

non-redundant role for temporal patterning that comple-

ments combinatorial coding in this olfactory system.

Conclusions
The synthesized view emerging from recent advances in

the field of insect olfaction indicate that neural represen-

tations in the insect antenna and antennal lobe can be
www.sciencedirect.com
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readily mapped onto the final behavioral responses. Such

a perspective raises several fundamental questions re-

garding the nature and relevance of processing performed

by higher centers in the insect brain, such as the mush-

room body and the lateral horn. For example,

� Do antennal lobe circuits facilitate stimulus discrimi-

nation, whereas the higher centers help consolidate

sensory inputs so that different stimuli can elicit the

same behavioral outcome?

� Under what conditions is a local (single or a few

neurons), global (entire circuit) or combinatorial coding

scheme used to encode the overall behavioral prefer-

ence for an odorant?

� What behaviorally relevant information is encoded in

the temporal coding dimension?

Investigating these issues would be necessary to identify

the set of rules that govern how sensory inputs are

translated into behavior in this sensory modality. More

generally, a better understanding of the insect olfactory

system’s processing principles may lead to approaches for

controlling insects in desirable ways, for example, attract-

ing a pollinator or repelling a pest [70,71].
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