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Adaptation of neural responses is ubiquitous in sensory systems and
can potentially facilitate many important computational functions.
Here we examined this issue with a well-constrained computational
model of the early olfactory circuits. In the insect olfactory system,
the responses of olfactory receptor neurons (ORNs) on the antennae
adapt over time. We found that strong adaptation of sensory input is
important for rapidly detecting a fresher stimulus encountered in the
presence of other background cues and for faithfully representing its
identity. However, when the overlapping odorants were chemically
similar, we found that adaptation could alter the representation of
these odorants to emphasize only distinguishing features. This work
demonstrates novel roles for peripheral neurons during olfactory
processing in complex environments.

NEW & NOTEWORTHY Olfactory systems face the problem of
distinguishing salient information from a complex olfactory environ-
ment. The neural representations of specific odor sources should be
consistent regardless of the background. How are olfactory represen-
tations robust to varying environmental interference? We show that in
locusts the extraction of salient information begins in the periphery.
Olfactory receptor neurons adapt in response to odorants. Adaptation
can provide a computational mechanism allowing novel odorant
components to be highlighted during complex stimuli.

adaptation; olfaction; receptor neurons; temporal code

INTRODUCTION

Sensory systems are responsible for representing sensory
cues encountered in the surrounding environment quickly and
reliably. A fundamental computational problem to be over-
come is thus extracting salient information from a noisy envi-
ronment contaminated with less important background signals
(Rokni et al. 2014). Furthermore, how do sensory systems
maintain the representation of the stimulus regardless of other
competing cues, and what mechanisms may play important
roles in achieving this computation?

Adaptation has been proposed as a mechanism to distinguish
between background and foreground olfactory objects in rats
(Kadohisa and Wilson 2006; Linster et al. 2007). In these
studies, adaptation serves as a filter to increase sensitivity to
novel stimuli. However, these studies identify the locus of
adaptation centrally, within the anterior piriform cortex, many

synapses away from the sensory neurons. Sensory systems
such as vision (Burns and Baylor 2001; Hardie and Raghu
2001) and audition (Hudspeth and Gillespie 1994; Ricci et al.
1998) begin complex computations right at the level of sensory
neurons. It remains unclear what role adaptation at the periph-
eral sensory neuron may play in olfaction and how this might
impact computational aspects of foreground-background odor
separation.

In the insect olfactory system, odorants are transduced into
electrical signals by olfactory receptor neurons (ORNs) in the
antennae and are transmitted to downstream centers for further
processing. ORNs respond to odorants with peaked transient
responses and moderate responses at steady state of long pulses
(Raman et al. 2010; Saha et al. 2013). The transition from peak
to steady-state firing rate is called adaptation. While much of
the study of odor coding has focused on the downstream
antennal lobe (AL) (Bazhenov et al. 2001a; Galizia and Sachse
2010; Ito et al. 2009; Laurent et al. 1996; Riffell et al. 2009;
Wehr and Laurent 1996, 1999), peripheral ORNs may play a
large, and underexamined, role in temporal patterning and odor
coding (Raman et al. 2010). In particular, sensory neuron
adaptation and its roles in temporal coding (Raman et al. 2010;
Wehr and Laurent 1996) and background separation (Kadohisa
and Wilson 2006; Linster et al. 2007; Saha et al. 2013) are not
well understood. The goal of this work was to investigate how
adaptation of ORNs can impact reliable odor coding in a
complex odor environment.

The locust olfactory pathway has been instrumental in un-
derstanding neural coding mechanisms including odor identity,
intensity, dynamics, and memory (Bazhenov et al. 2001a;
Laurent et al. 1996; Laurent and Davidowitz 1994; Mazor and
Laurent 2005; Perez-Orive et al. 2002; Stopfer et al. 1997,
2003). Recently, we have shown that other intricate functions,
such as odor recognition in complex background and novelty
detection, can be achieved by the AL circuit (Saha et al. 2013,
2015). Using an appetitive and innate behavioral assay, we
have also shown that the neural prediction matches well with
the behavioral outcomes (Saha et al. 2013, 2015; Simões et al.
2011). However, it is still unknown what role adaptation of the
ORNs plays in determining this success. Moreover, it is known
that spatiotemporal patterning in the AL is critically dependent
on the temporal pattering of ORN responses (Raman et al.
2010). All of these findings make ORN adaptation an impor-
tant topic of investigation toward understanding the role of
these peripheral neurons in recognition of a novel stimulus in
a complex environment.
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Here we approach these questions using a combination of
electrophysiological measurements and a biophysically realis-
tic model of the ORNs and the AL circuitry.

METHODS

Odor Stimulation

Odorants were delivered according to a standard protocol described
in an earlier work (Brown et al. 2005). Briefly, odor solutions were
diluted in mineral oil to 1% concentration (vol/vol) and placed in
60-ml glass bottles. Odor pulses were delivered by injection of a
constant volume (100 ml/min) of the static headspace above the
odorants into a desiccated airstream (750 ml/min) flowing continu-
ously across the antenna. A large vacuum funnel was placed behind
the locust preparation to continuously remove the delivered odorants.
The following odorants were used in this study: 2-octanol, hexanol,
cyclohexanone, 2-heptanone, benzaldehyde, isoamyl acetate, hexanal,
geraniol, citral, peppermint, and apple. Each stimulus was presented
multiple times in one or two pseudorandomized blocks of five trials.
The interstimulus interval was at least 60 s for all recordings.

Electrophysiology

Electrophysiological experiments were conducted in locusts (Schis-
tocerca americana) raised in a crowded colony. Young adults (after
the fifth instar) of either sex were used. ORN recordings were made
from different sensilla types in intact but immobilized locust antennae
as described previously (Raman et al. 2010). The antenna was stabi-
lized with wax, and a reference electrode (Ag/AgCl wire) was inserted
into the locust gut. Single-sensillum recordings were made with
saline-filled glass micropipettes (�10-�m diameter, 5–10 M�) that
were inserted into the base of the sensillum. Acquired signals were
amplified with a differential amplifier (Grass P55), filtered between
0.3 and 10.0 kHz, and acquired at a 15-kHz sampling rate (PCI-MIO-
16E-4 DAQ cards; National Instruments). Multiunit single-sensillum
recordings were spike sorted off-line with Spike-o-Matic software
(Pouzat et al. 2002) implemented in IGOR Pro (WaveMetrics).

To monitor activity in the AL, locusts were immobilized with both
antennae intact and the brain was exposed, desheathed, and super-
fused with locust saline at room temperature. In the AL, multiunit
tetrode recordings were made with 16-channel, 4 � 4 silicon probes
(NeuroNexus). These electrodes were electroplated with gold to
obtain impedances in the 200–300 k� range. A custom-made 16-
channel amplifier (Biology Electronics Shop, Caltech, Pasadena, CA)
was used to collect projection neuron data at 15 kHz. The data were
amplified at a 10,000 gain, filtered between 0.3 and 6 kHz ranges,
and saved with a LabVIEW data acquisition system. To allow the
assignment of recorded spikes to unique cell sources, spike sorting
was done off-line with the best three or four channels recorded and
conservative statistical principles (Pouzat et al. 2002). A total of
119 ORNs were recorded from 27 locusts, and 725 projection
neurons (PNs) were recorded from 70 locusts.

Adaptation Calculation

The level of ORN adaptation (Padp) is defined by the quantity

Padp � 1 �
steady state � baseline firing

peak firing � baseline firing

To reduce fast variation in adaptation calculations, we average over
the population of ORNs and filter this mean signal with a zero-phase
digital filter (MATLAB’s filtfilt). The peak firing rate was calculated
as the maximum firing rate over the first 2 s after stimulus. The
steady-state firing rate was determined by averaging over the time

window t � 2–4 s after stimulus. The baseline firing rate is calculated
as the average firing rate over the first second before stimulus.

Olfactory Receptor Model

The code used to simulate this model is available on our laboratory
website (https://www.bazhlab.ucsd.edu/downloads/). The olfactory
receptor model is based on a stochastic state transition scheme in
which each receptor can be in one of three discrete states: silent (S),
firing (F), or desensitized (D). The transitions between states are
based on a Monte Carlo method where a draw of random numbers
determines 1) when the next transition of any ORN’s state will occur
based on the sum of the propensities of all possible transitions and 2)
which ORN state transition will occur based on each individual
propensity (Gillespie 1976, 1977; also see outline below). The tran-
sition propensities �, �, and � represent the F¡S, F¡D, and D¡S
transitions, respectively. The S¡F transition is dependent on a pro-
pensity parameter, an alignment of odor with receptor x, and the
concentration of the odorant at a given time, �·A(x)·B(x,t), where the
odorant concentration depends on the ORN cell number, x, and on
time, t. The ORN alignment, A(x), is given by a Gaussian function
with peak value 4. The mean of this Gaussian determines the odor
identity, and the standard deviation, 	, determines the concentration—
increasing concentration has been shown to increase the population of
responding neurons, not the level of response (see Ito et al. 2009).
Here we used 	 � 900, or 10% of the total number of ORNs. The
temporal dependence of this function is given by a pulse function
B(x,t) � H[t � ton(x)] � H[t � toff(x)], where H(t) are step functions
and ton(x) and toff(x) are the on and off times of the odorant. They both
depend on the cell number because we added a cell-specific random
delay for the onset and offset of the odorant modeled by a uniform
random variable with max 500 ms. This delay is based on the
observed variable time from stimulus onset to ORN response seen in
electrophysiological recordings of ORNs (not shown).

We used the Gillespie exact stochastic simulation algorithm
(ESSA) (Gillespie 1976) to simulate the ORN model. The model was
divided into discrete events. The calculation of the state of the system
at a future time was designed as a four-step process (Gillespie 1976,
1977):

1. Each state transition event was assigned a probability of occur-
ring, ai, based on the propensity parameters given in Table 1 and
the current state of the ORNs. For example, ai � �·A(xi)·B(xi,t)
for an S¡F transition and ai � � for an F¡S transition. The
index i runs over all ORNs and possible transitions. The prob-
ability that event i occurs in the next small increment of time, 
,
is 
ai.

2. The time to the next event of any type was then calculated as a
Poisson process. Thus interevent times are exponentially distrib-
uted with parameter � � �iai. Drawing a random number from
this distribution, we obtain the time increment �t.

3. A final random number was drawn to determine which event
occurred. Here, each event occupies a proportion equal to ai/� of
the unit interval.

Table 1. Propensities used to simulate ORN model

Padp � � � �

0.1025 0.1000 0.1000 0.0090 0.0060
0.1943 0.1000 0.1000 0.0062 0.0033
0.2977 0.1000 0.1000 0.0054 0.0022
0.3915 0.1000 0.1000 0.0041 0.0015
0.4996 0.1000 0.1000 0.0034 0.0009
0.5979 0.1000 0.1000 0.0024 0.0005
0.7030 0.1000 0.1000 0.0017 0.0002

Transition propensities �, �, �, and � represent the S¡F, F¡S, F¡D, and
D¡S transitions respectively, where S is silent, F is firing, and D is desensi-
tized. ORN, olfactory receptor neuron; Padp, level of ORN adaptation.
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4. The selected reaction was executed, the ORN states were up-
dated, and time was incremented by �t.

To find parameters that conferred the desired adaptation properties,
we performed an exhaustive parameter search to find parameters �, �,
�, �. Parameters were selected so that maximal firing rate did not
differ more than 	5% between adaptation levels; only steady state
was affected. In our simulations, every ORN is assigned the same
parameters for a given level of adaptation. The parameters used are
given in Table 1.

Receptors only passed input to the AL in the firing state. Each PN
received input from 30 ORNs in regular fashion (e.g., 1st PN received
input from ORNs 1–30, 2nd PN received input from ORNs 31–60,
etc.; see also Fig. 2). Similarly, each local neuron (LN) received input
from 90 ORNs. This input produced a current given by

Istim,i � gstim�Fi�

where �Fi� is the count of ORNs connected to PNi that are in the firing
state at a given time step (see below for current Istim) and gstim � 1.43
�S is the conductance. The ORN firing rate is calculated by counting
of the number of ORNs in the firing state for each time step summed
over the time bin divided by the amount of time in the bin.

Antennal Lobe Model

The code used to simulate this model has been described previously
(Assisi et al. 2007, 2011; Bazhenov et al. 2001a, 2001b; Kee et al.
2015; Sanda et al. 2016) and is available on our laboratory website
(https://www.bazhlab.ucsd.edu/downloads/). The locust contains
~850 PNs and ~300 LNs. We modeled a scaled-down 300 PNs and
100 LNs with single compartments that included voltage- and Ca2
-
dependent currents described by Hodgkin-Huxley kinetics (Hodgkin
and Huxley 1952). Parameterization was done to minimize the num-
ber and complexity of ionic currents in each cell type and generate
realistic (though simplified) firing profiles. No attempt was made to
produce intrinsic resonant oscillations (pacemaker properties) in LNs
or PNs because such properties have never been observed in locust
LNs or PNs (Laurent 1996; Laurent and Davidowitz 1994). The model
was constrained to produce population oscillations [local field poten-
tial (LFP)] in the AL and cellular responses as observed in vivo
(Bazhenov et al. 2001a). Model equations were solved with a fourth-
order Runge-Kutta method with an integration time step of 0.04 ms.

Membrane potentials. PN and LN membrane potential equations
(Hodgkin and Huxley 1952) are given by

Cm

dVPN

dt
� �gL�VPN � EL� � INa � IK � IA � gKL�VPN � EKL�

� IGABAA
� InACh � Istim

Cm

dVLN

dt
� �gL�VLN � EL� � ICa � IK�Ca� � IK � gKL�VPN � EKL�

� IGABAA
� InACh � Istim

The LN passive parameters are given Cm � 1 �F (membrane
capacitance), gL � 0.15 �S (conductance for the leak current), gKL �
0.02 �S (conductance for the potassium leak current), EL � �50 mV
(reversal potential for the leak current), and EKL � �95 mV (reversal
potential for the potassium leak current). The PN passive parameters
are the same as LN except EL � �55 mV and gKL � 0.05 �S. An
external DC input was introduced to each neuron through Istim.

Intrinsic currents. The sodium current (INa) (see Traub et al. 1997)
is given by

INa � gNam
3h�V � ENa�

where the conductance in PNs is gNa � 7.15 �S and the reversal
potential is ENa � 50 mV. The gating variables satisfy the equations

dm

dt
� �

1


m
�m � m��V��

dh

dt
� �

1


h
�h � h��V��

The steady-state values of the gating variables are given by

m��V� �
1

1 
 exp��
V 
 20

6.5 �
h��V� �

1

1 
 exp��
V 
 25

12 �
The time constants are 
m � 1.5 and


h � 0.3exp�V � 40

13 � 
 0.002exp��
V � 60

29 �
The fast potassium current (IK) (see Traub et al. 1997) is given by

IK � gKn4�V � EK�
where the conductance in LNs is gK � 10 �S and the reversal
potential is EK � �95 mV. In the PNs, gK � 1.43 �S and EK � �95
mV. The equation for the gating variable n is given by

dn

dt
� �

1


n
�n � n��V��

where the steady-state value, n�, and the time constant, 
n, are
nonlinear functions of V and given by

n� �
�n

��n 
 �n��


n �
1

��n 
 �n��

where

�n � 0.02
15 � �V 
 50�

exp�15 � �V 
 50�
5 	 � 1

and

�n � 0.5exp�10 � �V 
 50�
40 	

The variable � depends on the temperature and is given by

� � 3� 22�36
10 � � 3�1.4 at 36°C.

The Ca2
 current (ICa) (see Laurent et al. 1993) is given by

ICa � gCam
2h�V � ECa�

where gCa � 2 �S and ECa � 140 mV. The gating variables satisfy
the equations

dm

dt
� �

1


m
�m � m��V��

dh

dt
� �

1


h
�h � h��V��

The steady-state values of the gating variables are given by
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m��V� �
1

1 
 exp��
V 
 20

6.5 �
h��V� �

1

1 
 exp��
V 
 25

12 �
The time constants are 
m � 1.5 and


h � 0.3exp�V � 40

13 � 
 0.002exp��
V � 60

29 �
The calcium-dependent potassium current [IK(Ca)] (see Sloper and

Powell 1979) is given by

IK�Ca� � gK�Ca�m2h�V � EK�Ca��
where gK(Ca) � 0.3 �S and EK(Ca) � �90 mV. The gating variable
satisfies the equation

dm

dt
� �

1


m 
 
x
�m � m��V��

while

m��V� �
�Ca2
�

�Ca2
� 
 2


m �
100

�Ca2
� 
 2

and 
x is obtained from a uniform distribution extending from �0.02
to 0.01. Calcium concentration ([Ca2
]) satisfies a simple first-order
equation:

d�Ca2
�
dt

� �AICa
�Ca2
� � �Ca2
��




where [Ca2
]� � 2.4 � 10�4 mM is the equilibrium of intracellular
[Ca2
], A � 5.2 � 10�4 mM·cm2/(ms·�A), and 
 � 5 ms.

The transient potassium A current (IA) (see Huguenard et al. 1991)
is given by

IA � gAm4h�V � EA�
where gA � 10 �S and EA � �95 mV. The gating variables satisfy
the equations

dm

dt
� �

1


m
�m � m��V��

dh

dt
� �

1


h
�h � h��V��

The steady-state values of the gating variables are given by

m��V� �
1

1 
 exp��
V 
 60

8.5 �
h��V� �

1

1 
 exp��
V 
 78

6 �
The time constants were given by


m �
0.25

�exp�V 
 35.8

19.7 � 
 exp��
V 
 79 . 7

12.7 � 
 0.09	
and


h �
0.25

�exp�V 
 46

5 � 
 exp��
V 
 238

37.5 �	
if V � �63 mV and 
h � 4.8 if V � �63 mV.

Synaptic currents. Fast GABA and nicotinic cholinergic synaptic
currents to LNs and PNs (Laurent 1996) are modeled by first-order
activation schemes (Destexhe et al. 1994). Fast GABA and cholin-
ergic synaptic currents are given by

Isyn � gsyn�O��V � Esyn�
where the reversal potential is EnACh � 0 mV for cholinergic recep-
tors and EGABAA

� �70 mV for fast GABA receptors. The fraction of
open channels, [O], is calculated according to the equation

d�O�
dt

� ��1 � �O���T� � ��O�

For cholinergic synapses transmitter concentration, [T], is given by

�T� � AH�t0 � tmax � t�H�t � t0�
and for GABAergic synapses

�T� �
1

1 
 exp��
V � V0

	 �
where H is the Heaviside step function (Korn and Korn 1968), t0 is the
time of receptor activation, A � 0.5, tmax � 0.3 ms, and 	 � 1.5. The
rate constants were given as � � 10 ms�1 and � � 0.16 ms�1 for
GABA synapses and � � 10 ms�1 and � � 0.2 ms�1 for cholinergic
synapses. The peak synaptic conductances were set to
gGABAA

� 4 � 10�4 between LNs, gGABAA
� 2 � 10�4 from LNs to

PNs, and gACh � 5 � 10�4 �S from PNs to LNs.
Network geometry. In the locust AL, LNs are synaptically con-

nected to other LNs and to PNs (Leitch and Laurent 1996). Both LNs
and PNs receive direct synaptic input from ORNs (Laurent 1996). All
network interconnections were random with 0.5 probability, suitable
for our scaled-down network (Assisi et al. 2012; Bazhenov et al.
2001b; Kee et al. 2015). Some of the intrinsic parameters of the
neurons in the network were initialized with random variability to
ensure robust results.

Classification

For both model and experiment, we considered ensemble PN spike
counts in a 50-ms nonoverlapping time bin as a high-dimensional
response vector. Response vectors obtained during solitary foreground
and background odor exposures were regarded as the desired refer-
ence templates to be pattern matched. Trial-averaged (5 trials exper-
iment, 10 trials model) reference templates were generated for each
odor (4-s pulse duration). These reference templates, representing the
mean ensemble PN activity during the 4-s window after odor onset,
were then compared to test trials using angular distance. Angular
distance, �, between a given test vector (Vt) and each reference vector
(Vr) was computed as follows:

� � cos�1� Vt · Vr

�Vt� · �Vr�
�
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To identify meaningful response patterns, only test vectors that met
the appropriate criteria were compared. First, we defined a threshold
length that must be exceeded by a vector to be considered an
odor-evoked response. The threshold was set as the mean (over trials
and time bins) of the Euclidean norm (over PNs) of the prestimulus
activity vectors 
 2 standard deviations of this mean. Second, we
defined a tolerance threshold that would restrict the classification
analysis to include only those vectors that are within a certain angular
distance to any one of the desired response templates. An 85° angular
distance threshold was used for classification analyses. Only those test
vectors that exceeded the detection threshold but were within the
defined tolerance threshold were classified. Each classified test vector
was assigned to the same odor category as its best-matching reference
template, background or foreground. In the model, distinct trials were
created by using different random seeds in the simulation of the ORN
model. Our stochastic state scheme ORN model created a large
amount of trial-to-trial variance.

Responsive PNs and Coactivation

For a PN to be considered as “responsive” to an odor, the following
two criteria had to be satisfied: 1) amplitude criterion: odor-evoked
average (over trials) neural activity in at least one of the time bins
during odor presentation window must exceed 6.5 standard deviations
of average baseline activity (response in a 1-s window before odor
onset) and 2) reliability criterion: the amplitude criterion has to be met
in at least 50% of total trials. In other words, the peak activity must
exceed this standard in both the average over trials and 50% of trials.

Coactivated PNs were those that were responsive to both odorants,
and thus the percentage of coactivated PNs, C, is given by

C � 100 �
PNs responsive to both odors

PNs responsive to second odor

RESULTS

Adaptation of ORNs in Vivo

Adaptation of peripheral neurons to prolonged olfactory
exposure is well characterized across vertebrates and inverte-
brates, specifically in the locust (Brown et al. 2005; Dalton
2000; Hendin et al. 1994; Kadohisa and Wilson 2006; Raman
et al. 2010; Verhagen et al. 2007). Sensory neuron adaptation
is particularly important in invertebrates for establishing the
temporal component to olfactory coding (Laurent et al. 1996;
Raman et al. 2010). However, it is still unclear how ORN
adaptation may depend on odor identity or affect downstream
odor coding in a complex odor environment.

To quantify ORN adaptation, we exposed locusts to long
odor pulses (4 s) and recorded from ORNs. We found, in
agreement with previous results (Saha et al. 2013), that on
average ORN activity in response to odor stimulus displays
several distinct temporal phases. Before odor onset, ORNs
fired action potentials at a baseline rate. Upon odor onset the
ORNs displayed a strong transient firing phase, which then
adapted to a steady-state activity within ~1.5 s from odor onset.
Note that the steady-state activity was typically elevated over
baseline activity. Finally, at odor offset, ORN activity returned
to the baseline firing rate smoothly from the steady-state firing
rate (Fig. 1A). However, the degree to which ORNs adapted
from the peak firing rate to the steady-state levels varied
dramatically. We quantified ORN adaptation properties using
the Padp measure that gives a percentage of adaptation from
peak response rate to steady-state ORN firing rate (see METH-

ODS). We found that the total level of adaptation, Padp, over all
odors tested ranged from 0.18 to 0.90 (Fig. 1, B–D). Chemical
specificity of receptors selects a distinct subset of ORNs with
definitive adaptation properties. This produces an adaptation
profile that is odor dependent. These data on variability in
adaptation of the ORN firing rates in vivo (Fig. 1D, inset) were
used to create a biophysically accurate model in silico.

How might these large differences in adaptation affect
downstream temporal coding? How does this affect the ability
of the olfactory system to reliably respond to novel stimuli in
a complex odor environment? To answer these questions, we
built a stochastic model of olfactory receptors that incorporated
receptor desensitization. This model reproduced the vast
amount of diversity in adaptation mentioned above and had
profound impacts on downstream coding of odors.

Stochastic Model of ORN Dynamics

We constructed a stochastic model of the individual ORNs
based on the linear kinetic transitions between three states:
silent, firing, and desensitized states. We provide a brief
description of the model here and a detailed description in
METHODS. ORNs passed input to the downstream AL only while
in the firing state. ORNs in the desensitized state had to return
to the silent state before firing again. Transitions between states
were executed based on random number draws, the number of
ORNs in a particular state, and transition propensity parame-
ters (see METHODS and Gillespie 1976). The ORNs in the firing
state produced an input current to the AL network, which
contained 300 PNs and 100 LNs (see METHODS and Fig. 2A).
Our stochastic model generated ORN responses similar to
those observed in vivo (compare Fig. 2, B and C, and Fig. 1;
see also Raman et al. 2010). By adjusting the parameters
governing transition to and recovery from desensitization, we
created ORN activity with various levels of adaptation (see
Fig. 2C and METHODS). Specifically, we found parameters that
created Padp values between 0.1 and 0.7 (see METHODS and
Table 1) and matched temporal and spatial profiles of ORN in
vivo response. ORN input to the AL elicited complex PN
responses (see Fig. 2, D and E) with characteristic LFP oscil-
lations at ~20 Hz (Fig. 2, F and G; Bazhenov et al. 2001a;
Laurent et al. 1996). The computational model of the AL
neurons (both PNs and LNs) is based on previous modeling
work (Assisi et al. 2007, 2011; Bazhenov et al. 2001a, 2001b,
Kee et al. 2015; Sanda et al. 2016). In contrast to our AL
model, our new ORN model was constructed to be more
computationally efficient, to simulate a large number of ORNs,
and to highlight the role of adaptation in olfactory stimulation.

In constructing the ORN model, it was crucial that the model
could generate the appropriate concentration dependence, es-
pecially considering that we intend to effectively double the
concentration when presenting two similar odors simultane-
ously. However, to the best of our knowledge, there is no
systematic study of ORN activity while varying odorant con-
centration in locusts. Conflicting results have been obtained
from different organisms. In the fruit fly (Hallem and Carlson
2006; Kreher et al. 2008), single ORNs can increase firing rates
over two orders of magnitude depending on the concentration.
In the moth (Ito et al. 2009), the proportion of responsive
ORNs increases but maximal firing rate of ORNs does not. We
found that our model can reproduce both behaviors depending
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on the concentration of the stimulus. At high concentration,
ORNs largely responded only by increasing the proportion of
responding ORNs and not by increasing peak activity of single
ORNs. However, at lower concentration peak ORN activity
also increased. The odor concentrations we used for the exper-
iments are phenomenologically closer to what we see in moths
(Ito et al. 2009); however, the main findings of our work are
not dependent on this.

Adaptation Improved Classification of Dissimilar Odorants

The natural olfactory environment involves complex com-
binations of many odorants presented simultaneously, which
increases the difficulty of odor identification. To quantify the
role of ORN adaptation in the response to complex stimuli, we
employed in the model a stimulation paradigm similar to that
we have used before in vivo (Saha et al. 2013, 2015). The first

odor (background odor) was presented for a longer time (8 s).
Starting 2 s after the onset of the background odor, during the
steady-state phase of background odor adaptation (see Fig. 1),
we presented a second odor (foreground odor) for a shorter
time (4 s) (Fig. 3A). Our model produced ORN population
dynamics qualitatively similar to those seen in vivo (Fig. 3A,
inset). Specific discrepancies between the model and experi-
mental responses are largely due to variation of peak ORN
response from foreground to background odors. Populations of
ORNs in vivo show response variation in multiple different
domains including adaptation, peak response, odor similarity,
and others. We first set out to study the effects of adaptation
alone and therefore restricted ourselves to modeling responses
with identical peak response and dissimilar background and
foreground odors. We defined dissimilar odors as those that
have little to no overlap in the inputs to ORNs (see Fig. 3A,
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left). We then asked whether the neural representation of the
foreground odor was disrupted by the presence of the back-
ground odor. We have previously explored in vivo the role of
time delays between foreground and background presentations
(Saha et al. 2013) and found that even small delays between
background and foreground odor onsets are sufficient to cor-
rectly recognize foreground odorants. Here we focus on adap-
tation and odor similarity.

To quantify the success of odor recognition by AL neurons,
we used a classification algorithm we developed previously
(Saha et al. 2013, 2015). First, we summed PN firing activity
in 50-ms nonoverlapping time bins and created a high-dimen-
sional representation of PN responses to odorants, where each
spatial dimension is given by the number of spikes of each
specific PN and the temporal dimension is given by the specific
bin number. At each time bin, we compared the high-dimen-

Fig. 2. Model of the first 2 stages of olfactory
pathway. A: the model olfactory circuit consists of
9,000 olfactory receptor neurons (ORNs) that proj-
ect to 300 projection neurons (PNs) and 100 local
neurons (LNs) in the antennal lobe. The LNs make
GABAergic synapses (green) on PNs and other
LNs. The PNs make AMPA synapses (black ar-
rows) onto LNs and project to downstream neural
structures. B: activity of model ORNs with spatial
(y-axis) and temporal (x-axis) dependence. Because
of the large number of ORNs, we show the average
of 30 ORNs on the spatial scale. Hotter colors
indicate stronger activity. The color range denotes
0–11 Hz. Spatial dependence of input intensity to
the ORN model (left) is Gaussian, and temporal
dependence of input intensity, R(t), is given by a
linear ramp up and down in time (bottom). See
METHODS for details. C: ORN activity summed over
all ORNs for various levels of ORN adaptation
(Padp). D and E: odor-evoked spiking responses of
sample PNs. F: local field potential (LFP) com-
puted as the average of model PN voltage. G:
power spectrum of the sample LFP shown in F
calculated with standard fast Fourier transform
methods.
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sional response vector of the overlap of the foreground and
background odors (hereafter called simply overlap) to the
high-dimensional response of the foreground odor alone and to
background odor alone by determining the minimal angular
distance in the high-dimensional space. It should be noted that
our algorithm requires certain criteria to be met in order to
classify an odor. Hence, not all points will be classified as
either foreground or background (see METHODS).

Averaging over 10 trials, we obtained classification func-
tions giving time-dependent pattern-matching results of over-
lap to foreground and overlap to background odors (Fig. 3, E
and F, respectively). The classification success of model results
largely depended on the sources of variance between different
trials of the same odorant, which were driven by the stochastic
nature of the ORN model (see METHODS). The results from
model simulations were compared to those of in vivo record-
ings. Odorants that had strong adaptation showed high classi-
fication success (Padp � 0.7 is shown in Fig. 3, A, C, and E).
When we performed the same experiment with odors that adapt
less (Padp � 0.19 is shown in Fig. 3, B, D, and F), the
classification success of foreground was significantly reduced.
In general, we report that mean classification success when
compared between dissimilar background and foreground odor
pairs, both in model simulations and in vivo, depends strongly
on the level of adaptation of the ORNs, Padp (Fig. 3G). Higher
values of classification are seen in the model because other
considerations, such as odor similarity, have not yet been
accounted for.

Adaptation Primed AL Circuit for Novelty Detection

Adaptation of the ORNs offers an advantage in recognizing
multiple odors in a complex environment. Increasing ORN
adaptation diminishes the impact of the background odorants
on the downstream AL circuit and enhances impact of the
foreground odors. But how would this change the spatiotem-
poral pattern of population PN responses?

To investigate the mechanism by which adaptation increases
classification success in the AL during complex odor presen-
tations, we employ dimensionality reduction techniques to
visualize the effect of adaptation on model PN responses.
High-dimensional responses were projected onto the first three
principal directions (eigenvectors of the response covariance
matrix corresponding to largest eigenvalues) that accounted for
maximum variance in the data by principal component analysis
(PCA). These directions were determined on the basis of the
variance of PN firing rate over time and stochastic trials during
all three conditions (foreground, background, and overlap)
jointly. Our modeling results were qualitatively similar to those
found with in vivo recordings (Mazor and Laurent 2005;
Raman et al. 2010; Saha et al. 2015). Solitary foreground and
background trajectories originated from baseline levels, under-
went a large transient, and then remained near the fixed point
until odor offset, when they returned to baseline (Fig. 4A).
Overlap trajectories, as the presentation of the foreground odor
on top of the background odor, originated from the background
fixed point and projected toward the foreground trajectory (Fig.
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4, A–C). We found that increasing adaptation of ORNs
changed the location of the stationary fixed points, bringing
fixed points of the each stimulus type (solitary foreground,
solitary background, and overlap) closer to the baseline sta-
tionary point (Fig. 4D). Thus increasing ORN adaptation
brought the origin of the overlap trajectory closer to the
baseline stationary point and therefore aligned the overlap
trajectory better with the foreground trajectory. We quantified
this alignment by calculating the distance between the peak
(maximal norm of PCA trajectory) of the foreground and
overlap trajectories (Fig. 4E). We found that the alignment of
foreground and overlap peaks correlated with higher classifi-
cation (Fig. 4F). We qualify this action of adaptation (bringing
the steady state or “fixed point” closer to the baseline) as
“priming for novelty,” since it brings the system close to its
prestimulus state.

The main contribution of receptor adaptation in resolving
distinct odors is the attenuation of the competing background
odor signal. Adaptation desensitizes ORNs to constant back-
ground stimuli, and this resets the olfactory system to be
sensitive to novel, and distinct, odorants. We showed that the

odor-evoked trajectory of PNs, which are one synapse down-
stream of ORNs, is transformed by ORN adaptation. Specifically,
activity in the AL after adaptation was “close,” in PCA space, to
the baseline: priming for novelty. In contrast, odorants that did not
adapt showed distinctive PCA trajectories, between solitary and
overlap presentations, and poor classification. However, we have
restricted the scope of the complex environment to concurrent
presentations of “dissimilar” odorants.

Similar Odors Caused Interference Leading to Poor
Odor Recognition

To investigate the effect of ORN adaptation on representa-
tions of the foreground odorants in the presence of similar
background odorants, we created inputs to our model ORNs
with various degree of overlap (Fig. 5, A and B, left insets). We
found that similar odors can cause selective interference in an
adaptation-specific manner. Specifically, in response to the
foreground odor in the presence of a similar background odor
that adapted significantly, spikes were lost from the population
of PNs that are coactivated by both odorants (Fig. 5D, PNs
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250–300). At the same time, similar odors that did not adapt
showed little to no loss of PN spikes (compare Fig. 5, B vs. D,
PNs 250–300). We showed in Adaptation Primed AL Circuit
for Novelty Detection that increases in adaptation increased
alignment of the PCA trajectories between foreground and
overlap conditions for dissimilar odors (compare Fig. 5, E vs.
G). In contrast, analysis of the PCA trajectories of the similar
odors revealed that the overlap trajectory for similar odorants
with large adaptation overshot the foreground target trajectory,
indicating a response misalignment (compare Fig. 5, G vs. H)
adaptation. This misalignment was mirrored by a decrease in
classification rate with increased coactivation in the case of
strongly adapting background odor. Classification dropped as
similarity increased when adaptation was moderate as well.
When adaptation was minimal, classification was largely inde-
pendent of similarity (Fig. 5I).

Thus adaptation has differential effects on classification
depending on the similarity between odorants. When odors are
dissimilar, ORN adaptation resets the olfactory system after
long presentations of background odors to allow for robust
representations of foreground odors. However, when odors are
similar, our model predicts that ORN adaptation causes the
specific loss of spikes from PNs that are coactivated by both
foreground and background odors. This spike loss only occurs
when odors are similar and adaptation is high.

Loss of Spikes from Coactivated PNs in Model and in Vivo

Our model predicts that neural representation of similar
odorants can be altered when a foreground odor is presented on
top of a highly adapting background odor. This mechanism
should lead to specific observations in experimental data. We
predict that the peak of PN responses would decrease during
the overlap (foreground in the presence of background odors)
relative to the solitary (foreground only) presentations. Con-
current stimulation of similar odors leads to a population of
already adapted receptor neurons (from stimulation of the
background odor) that significantly reduce their response to the
foreground odor because of adaptation: the coactivated popu-
lation. Thus PN activity loss should come specifically from the
population of PNs that are coactivated by both foreground and
background odors. Furthermore, we predict that reduction in
the peak of PN activity would scale with the size of the
coactivated population, a measure of odor similarity.

Indeed, we found strong agreement between these model
predictions and experimental recordings (Fig. 6) (see also Saha
et al. 2015). Both model and experiment showed statistically
significant reduction of the peak activity in response to the
foreground odor during its presentation on the top of a similar
background odor (Fig. 6, C and D; model: P � 5.1 � 10�7,
experiment: P � 5.3 � 10�4). This reduction was not present
during simultaneous presentation of the dissimilar odors (com-
pare Fig. 6, A and B; model: P � 0.34, experiment: P � 0.30).

To evaluate the cause of this reduction in PN activity, we
segregated PNs into three different populations of responsive
PNs: PNs responsive to foreground odor only, PNs responsive
to background odor only, and coactivated population of PNs
(responsive to both). Each PN was deemed responsive to a
specific odor if its activity increased significantly above base-
line during the presence of that odor (see METHODS). Our model
predicts that activity loss during overlapping odor presenta-

tions should come from the spikes in the coactivated PN
population. Similar odor pairs that had a significant drop in
activity revealed that this reduction depended on the coacti-
vated PN population both in the model (Fig. 6E) and in
experiment (Fig. 6F). Our modeling results predict that in-
creasing amounts of spikes will be lost from the coactivated
population with increasing odor similarity and adaptation (Fig.
6G). In extreme cases, very high adaptation and very similar
odors, we found that this coactivated activity decreased even
below levels seen during adapted background odor stimulation
(2 s after odor stimulation: the portion aligned with overlap
stimulus). In other words, exposure to foreground on top of
background removed spikes from the neural representation of
the background odor. Although the trend is not as clear as in
the model, we found that both adaptation and similarity in-
crease the magnitude and significance of the coactivated PN
loss in experimental data (Fig. 6H). The relationship may not
be as clear in the experimental case because of the small
number of odor pairs (12) and unaccounted sources of variation
(such as variability in the peak ORN response). However, the
agreement between model and experiment is very clear when
comparing odor similarity alone (Fig. 6I).

Adaptation Altered Odor Representation Highlighting
Novel Components

The natural environment may include presentations of com-
plex odor mixtures with overlapping components. It is vital for
animal survival to reliably detect novel odorants, even in the
presence of background odorants. We first investigated the
mechanisms of background subtraction, through loss of coacti-
vated activity, in our model. During overlap presentations a
higher portion of the coactivated ORN population is in the
desensitized state and thus cannot become activated, leading to
reduced ORN activity (Fig. 7A). This leads to a decrease in
input to PNs, as reported earlier. Moreover, we found that
coactivated spike loss from PNs was much greater than from
ORNs (Fig. 7B). This was most likely due to lateral inhibition
silencing coactivated PNs with only moderate input. We next
sought to determine whether the loss of coactivated PN spikes
that we report in this study could lead to an altered odor
representation. To investigate this, we created background and
foreground odors with both distinct and overlap features (Fig.
7C). Here, the background odor is created as a mixture of
components I and II, and the foreground odor is a mixture of
components II and III. These components (I–III) may corre-
spond, e.g., to the small chemical compounds with different
functional groups like hexanal, hexanol, cyclohexanone. We
then tested whether the neural representation was closest to the
foreground odor (II 
 III), the background odor (I 
 II), or a
third unique odor formed by the component unique to the
foreground odor only and not present in the background odor,
III. We found that the loss of coactivated PN spikes increased
with odor adaptation level, as reported before (Fig. 7, C–E),
and at the highest levels of adaptation only the unique com-
ponents of the foreground were identified (Fig. 7, F–H). We
also found that as the adaptation increased the overlap trajectory
aligned more closely with the unique components to the fore-
ground odor (III) than either foreground or background trajecto-
ries (Fig. 7, I–K). Therefore, we conclude that loss of coactivated
PN spikes, caused by presentation of a foreground odor on top of
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the similar background odor, caused an alteration of the fore-
ground representation in favor of unique components.

DISCUSSION

Adaptation is a common feature to many sensory systems.
Using a combination of computational modeling and electro-
physiology, we found that ORN adaptation can have divergent
effects on odor recognition: strong ORN adaptation was ben-
eficial for recognition of the dissimilar foreground odors in the
presence of a background odor but altered the representation of
foreground odors when background odors were similar.

Diversity of ORN Adaptation

Recordings from the locust antennae (Raman et al. 2010) or
individual ORNs (Fig. 1) revealed a characteristic response of
the ORNs to olfactory stimulus. Averaged responses of ORNs

have previously been regarded as representative of the tempo-
ral structure of the output of the antennae. Both computational
models (Bazhenov et al. 2001a, 2001b) and electrophysiolog-
ical recordings (Wehr and Laurent 1999) have shown that the
characteristic 20-Hz oscillations recorded in the insect calyx
are generated by AL circuitry and occur even when simplistic
electrical input is given to the AL. However, dynamic variabil-
ity characteristics of the PN odor responses, such as outlasting
the stimulus and transitioning between periods of excitation
and inhibition, require heterogeneous input from the ORNs,
such as those elicited by olfactory stimuli (Raman et al. 2010).

Application of specific odorants selects a unique set of
responsive ORNs (Hallem and Carlson 2006). Here we report
that ORN responses in locusts generate adaptation profiles that
ranged between 0.18 � Padp � 0.9. The specific dynamics,
including adaptation, of ORN responses originate with the
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individual olfactory receptor kinetics (Hallem et al. 2004). In
rodents, individual receptors respond to long odor pulses by
accumulating intracellular calcium, which eventually inhibits
the receptor and renders it in an inactive state (Ma 2007; Zufall
and Leinders-Zufall 2000). In this study we implemented a
stochastic state ORN model specifically to incorporate receptor
desensitization (Fig. 2 and METHODS). We propose that adapta-
tion of ORNs provides a novel component of the odorant
information generated in the antennae by the kinetics of re-
sponsive olfactory receptors. This information is then transmit-
ted downstream to the AL, where it is necessary for complex
dynamics in the AL.

Adaptation Facilitates Classification of Dissimilar Odors by
Priming AL for Novelty Detection

The natural olfactory setting for insects can include perva-
sive background stimuli. Background odorants can have a
variety of impacts on odor-induced behavior of insects
(Schröder and Hilker 2008). The identification of ecologically
relevant odors (e.g., those indicating food or predators) re-
mains critical. Even in the case of conserved pheromone
olfactory pathways, the presence of background odors can alter
sensory processing (Renou et al. 2015). Behavioral experi-
ments with locusts revealed a large variance in success in
recognizing odorants in a complex background (Saha et al.
2013, 2015). What role does processing at the periphery (i.e.,
ORN adaptation) have in predicting the success rate of this
task?

Our work shows that adaptation has a substantial positive
effect on this type of classification when background and
foreground odors are dissimilar (Fig. 3). Dimensionality reduc-
tion analysis of the PN odor response trajectories revealed that
adaptation acts largely by resetting the AL circuitry to pre-
stimulus conditions but leaves the transient activity largely
unaffected (Fig. 4). In vivo studies reported that PNs are
maximally informative about odor identity in on- and off-
transients and less so during steady state (Mazor and Laurent
2005). Adaptation allows the AL to desensitize to persistent
background odors without altering the informative component
of these odors, the on-transient. Subsequently, by the time
when the substantially dissimilar foreground odor is applied,
adaptation has nearly reset the AL and representations of the
foreground odors occur as though there was no background
odor at all.

Adaptive responses to background odors have been shown
previously in the extraction of salient information from a
complex odor environment in rats (Kadohisa and Wilson 2006;
Linster et al. 2007). However, in this case the origin of neural
adaptation occurred centrally. Our work demonstrates that in
locusts this adaptation can occur at the first neuron in the
olfactory system and this adaptation has a direct impact on
downstream odor recognition (Fig. 3).

Adaptation Alters Representation of Similar Odors

Discriminating similar odors is a hard task for locusts. When
this task is performed in the context of a background odorant,
locusts show a highly variable success rate (Saha et al. 2015).
Our work demonstrates that adaptation of ORNs interferes with
this task, an effect we denote similar odor interference. The
interference is a direct consequence of the decrease in firing

rate in the PNs that are responsive to both background and
foreground odors, the coactivated PNs.

In our model, the loss of coactivated PN spikes can be
explained by a two-stage mechanism. In the antenna, during
the steady-state phase of the background odor presentation but
before the onset of the foreground odor, ORNs in the overlap
of both odorants are pushed into the desensitized state (Fig.
7A). When the foreground odor is later presented, these ORNs
cannot respond to the foreground odor because they have been
desensitized. In the AL, PNs downstream of this subset of
ORNs will receive muted input, leaving them vulnerable to the
lateral inhibition from LNs. Therefore, when odors share ORN
populations that respond with highly adapting firing rates, peak
activity will be less in the overlap (background over fore-
ground) presentations than in the solitary foreground presen-
tations (Fig. 7B). This effect should vary with the degree of
similarity as seen in vivo (Saha et al. 2015).

Our model predicted that the variance in success of identi-
fying foreground odors over background, as reported in vivo
(Saha et al. 2013, 2015), may be due to interference of similar
background and foreground odor representations. Indeed, our
experimental results revealed that 1) peak activity of AL drops
during overlap presentations of similar odors, 2) this drop
comes primarily from the coactivated population, and 3) the
magnitude of this drop is predicted by the odor similarity and
thus the size of the coactivated population. Our modeling
results further predict that adaptation of ORNs during the
presentation of similar background odors selects only for novel
components of similar odorants (Fig. 7). This phenomenon is
similar to nonassociative learning in honeybees, where fre-
quent applications of an unrewarded background odor shifted
the representation of odor mixtures toward the novel compo-
nent (Chen et al. 2015; Locatelli et al. 2013). These results, and
our own, suggest that novelty detection is a critical component
in insect olfaction across multiple species.

We have previously discussed the relationship between odor
similarity and loss of synchrony, which was quantified by the
peak activity drop during overlap odor presentations (Saha et
al. 2015). We proposed that loss in peak activity from overlap
to solitary presentations was in part due to interference in the
temporal component of the odor coding (such as jittering of PN
spikes). Here we report that another factor accounting for this
peak activity loss is deletion of spikes from the coactivated
population of PNs during the first second of stimulus.

We found in computational models and experiments that
similar odor interference alters the neural representation of the
foreground odor. But might this interference go so far as to
trick the animal into believing that a completely different
odorant was presented? Our modeling results show that similar
odor interference realigns foreground representations, demon-
strating a type of hysteresis in the olfactory representation
scheme. Whether this may lead to misclassification of olfactory
behavior remains to be shown.

Conclusions

Adaptation of the primary sensory neurons plays a critical
role in resetting neural systems to allow for novel stimuli. We
showed that this strategy could be also employed in the insect
olfactory system. However, adaptation leads to surprisingly
different effects on the robustness of odor representation de-
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pending on ORN adaptation level and odor similarity. Our
results provide a novel insight into the strengths and vulnera-
bilities of a ubiquitous coding strategy, adaptation, in the
specific case of insect olfaction.
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